Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Adv Sci (Weinh) ; : e2310134, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634567

RESUMO

Intraperitoneal dissemination is the main method of epithelial ovarian cancer (EOC) metastasis, which is related to poor prognosis and a high recurrence rate. Circular RNAs (circRNAs) are a novel class of endogenous RNAs with covalently closed loop structures that are implicated in the regulation of tumor development. In this study, hsa_circ_0001546 is downregulated in EOC primary and metastatic tissues vs. control tissues and this phenotype has a favorable effect on EOC OS and DFS. hsa_circ_0001546 can directly bind with 14-3-3 proteins to act as a chaperone molecule and has a limited positive effect on 14-3-3 protein stability. This complex recruits CAMK2D to induce the Ser324 phosphorylation of Tau proteins, changing the phosphorylation status of Tau bound to 14-3-3 and ultimately forming the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex. The existence of this complex stimulates the production of Tau aggregation, which then induces the accumulation of lipid peroxides (LPOs) and causes LPO-dependent ferroptosis. In vivo, treatment with ferrostatin-1 and TRx0237 rescued the inhibitory effect of hsa_circ_0001546 on EOC cell spreading. Therefore, based on this results, ferroptosis caused by Tau aggregation occurs in EOC cells, which is not only in Alzheimer's disease- or Parkinson's disease-related cells and this kind of ferroptosis driven by the hsa_circ_0001546/14-3-3/CAMK2D/Tau complex is LPO-dependent rather than GPX4-dependent is hypothesized.

2.
Phytomedicine ; 128: 155384, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547620

RESUMO

BACKGROUND: Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE: In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS: Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS: In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION: The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.

3.
Cell Biochem Funct ; 42(2): e3985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509716

RESUMO

Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Ferro/metabolismo , Morte Celular , Espécies Reativas de Oxigênio/metabolismo , Autofagia
4.
Front Pharmacol ; 15: 1260603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323083

RESUMO

Background: Wendan Decoction (WDD) is a six-herb Chinese medicine recipe that was first mentioned in about 652 AD. It is frequently used to treat hyperlipidemic patients' clinical complaints. According to reports, oxidative stress has a significant role in hyperlipidemia. Purpose: There has not yet been a thorough pharmacokinetic-pharmacodynamic (PK-PD) examination of the clinical efficacy of WDD in the context of hyperlipemia-related oxidative stress. Therefore, the goal of this research is to explore the antioxidant essence of WDD by developing a PK-PD model, ordering to assure its implication in treating hyperlipidemia in medical practice. Methods: The model rats of foodborne hyperlipidemia were established by feeding with high-fat feed, and the lipid-lowering effect of WDD was explored. The plasma drug concentration of rats at different doses were measured by UPL-MS/MS technology, and PK parameters were calculated using Phoenix WinNonlin 8.1 software. The level of lipid peroxide (LPO) in plasma at different time points was measured by enzyme labeling instrument. Finally, the PK-PD model was established by using Phoenix WinNonlin 8.1 software, to explore the lipid-lowering effect of WDD and the relation between the dynamic changes of chemical components and antioxidant effect. Results: The findings suggested that, WDD can reduce the levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) in plasma, and high-density lipoprotein cholesterol (HDL-C) was related to the dosage. Between the peak drug levels and the WDD's maximal therapeutic response, there existed a hysteresis. WDD's effect-concentration curves displayed a counterclockwise delaying loop. Alternatively, among the ten components of WDD, hesperetin, quercetin, naringenin and tangeretin might exert more significant effects in regulating the LPO levels in hyperlipidemic rats. Conclusion: This study can be helpful for other investigators to study the lipid-lowering effect of WDD.

5.
Phytochemistry ; 219: 114002, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286199

RESUMO

It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.


Assuntos
Produtos Biológicos , Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Peroxidação de Lipídeos , Apoptose , Produtos Biológicos/farmacologia
6.
Adv Mater ; 36(2): e2304098, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37689975

RESUMO

Ferroptosis-related cancer therapy is limited by insufficient Fe2+ /Fe3+ redox pair and hydrogen peroxide (H2 O2 ) for producing lethal hydroxyl radicals (·OH). Although exogenous iron or ROS-producing drugs can enhance ferroptosis, exploiting endogenous iron (labile iron pool, LIP) stored in ferritin and promoting ROS generation may be safer. Herein, a metal/drug-free nanomedicine is developed for responsive LIP release and H2 O2 generation on the mitochondria membranes, amplifying hydroxyl radical production to enhance ferroptosis-mediated antitumor effects. A glutathione(GSH)/pH dual activatable fluorinated and cross-linked polyethyleneimine (PEI) with dialdehyde polyethylene glycol layer nanocomplex loaded with MTS-KR-SOD (Mitochondria-targeting-sequence-KillerRed-Superoxide Dismutase) and CRISPR/Cas9-CA IX (Carbonic anhydrase IX (CA IX)) plasmids (FP@MC) are developed for enhanced ferroptosis through endogenous iron de-hijacking and in situ ROS amplification. Two plasmids are constructed to knockdown CA IX and translate KillerRed-SOD recombinant protein specifically on mitochondria membranes, respectively. The CA IX knockdown acidifies the intracellular environment, leading the release of LIP from ferritin as a "flare" to initiate endogenous chemodynamic therapy. Meanwhile, MTS-KR-SOD generates H2 O2 when irradiated by a 590 nm laser to assist chemodynamic therapy, leading to ROS amplification for mitochondria damage and lipid peroxide accumulation. The combined therapeutic effects aggravate cancer ferroptosis and suppress tumor growth, providing a new paradigm for amplifying ROS and iron ions to promote ferroptosis-related cancer therapy.


Assuntos
Ferro , Neoplasias , Humanos , Polietilenoimina , Espécies Reativas de Oxigênio , Ferritinas , Glutationa , Peróxido de Hidrogênio , Radical Hidroxila , Superóxido Dismutase/genética , Genes Neoplásicos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
7.
Redox Biol ; 66: 102850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37586249

RESUMO

Long-chain acyl-CoA synthetase (ACSL) 4 converts polyunsaturated fatty acids (PUFAs) into their acyl-CoAs and plays an important role in maintaining PUFA-containing membrane phospholipids. Here we demonstrated decreases in various kinds of PUFA-containing phospholipid species in ACSL4-deficient murine lung. We then examined the effects of ACSL4 gene deletion on lung injury by treating mice with two pulmonary toxic chemicals: paraquat (PQ) and methotrexate (MTX). The results showed that ACSL4 deficiency attenuated PQ-induced acute lung lesion and decreased mortality. PQ-induced lung inflammation and neutrophil migration were also suppressed in ACSL4-deficient mice. PQ administration increased the levels of phospholipid hydroperoxides in the lung, but ACSL4 gene deletion suppressed their increment. We further found that ACSL4 deficiency attenuated MTX-induced pulmonary fibrosis. These results suggested that ACSL4 gene deletion might confer protection against pulmonary toxic chemical-induced lung injury by reducing PUFA-containing membrane phospholipids, leading to the suppression of lipid peroxidation. Inhibition of ACSL4 may be promising for the prevention and treatment of chemical-induced lung injury.


Assuntos
Lesão Pulmonar , Camundongos , Animais , Peroxidação de Lipídeos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Xenobióticos , Deleção de Genes , Fosfolipídeos , Ácidos Graxos Insaturados , Pulmão , Ligases
8.
Adv Healthc Mater ; 12(28): e2301292, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37458333

RESUMO

As a distinctly different way from apoptosis, ferroptosis can cause cell death through excessive accumulation of lipid peroxide (LPO) and show great potential for cancer therapy. However, efficient strategies for ferroptosis therapy are still facing great challenges, mainly due to insufficient endogenous H2 O2 or relatively high pH value for Fenton reaction-dependent ferroptosis, and the high redox level of tumor cells attenuates the oxidation therapy. Herein, an efficient lipid-based delivery system to load oxidation catalyst and glutathione peroxidase 4 (Gpx4) inhibitor is orchestrated, intending to amplify Fenton reaction-independent ferroptosis by bidirectional regulation of LPO accumulation. Ferric ammonium citrate (FAC), Gpx4 inhibitor sorafenib (SF), and unsaturated lipids are constructed into mPEG2K -DSPE-modified liposomes (Lip@SF&FAC). Influenced by the high level of intratumoral glutathione, FAC can be converted into Fe2+ , and subsequently the formed iron redox pair (Fe2+ /Fe3+ ) catalyzes unsaturated phospholipids of liposomes into LPO via a Fenton reaction-independent manner. Meanwhile, SF can downregulate LPO reduction by inhibiting Gpx4 activation. In vitro and in vivo antitumor experiments show that Lip@SF&FAC induces massive LPO accumulation in tumor cells and ultimately exhibits strong tumor-killing ability with negligible side effect. Consequently, this two-pronged approach provides a new ferroptosis strategy for predominant LPO accumulation and enhanced cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Lipossomos/farmacologia , Oxirredução , Apoptose , Peróxidos Lipídicos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
9.
Ecotoxicol Environ Saf ; 263: 115279, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480692

RESUMO

The growing presence of yttrium (Y) in the environment raises concern regarding its safety and toxicity. However, limited toxicological data are available to determine cardiotoxicity of Y and its underlying mechanisms. In the present study, yttrium chloride (YCl3) intervention with different doses was performed in male Kunming mice for the toxicological evaluation of Y in the heart. After 28 days of intragastric administration, 500 mg/kg·bw YCl3 induces iron accumulation in cardiomyocytes, and triggers ferroptosis through the glutathione peroxidase 4 (GPX4)/glutathione (GSH)/system Xc- axis via the inhibition of Nrf2 signaling pathway. This process led to cardiac lipid peroxidation and inflammatory response. Further RNA sequencing transcriptome analysis found that many genes involved in ferroptosis and lipid metabolism-related pathways were enriched. The ferroptosis induced by YCl3 in cardiomyocytes ultimately caused cardiac injury and dysfunction in mice. Our findings assist in the elucidation of the potential subacute cardiotoxicity of Y3+ and its underlying mechanisms.


Assuntos
Ferroptose , Miócitos Cardíacos , Masculino , Camundongos , Animais , Peroxidação de Lipídeos , Cardiotoxicidade , Ítrio , Inflamação , Ferro
10.
Biomaterials ; 300: 122205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348324

RESUMO

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral , Oxirredução , Peróxidos Lipídicos , Sorafenibe , Ferro , Linhagem Celular Tumoral
11.
Gene ; 876: 147515, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37247796

RESUMO

Ovarian cancer (OC) is a malignant gynecologic tumor with high morbidity and mortality. As a newly discovered mode of programmed cell death, ferroptosis has been involved in various pathological processes of kinds of tumors in recent years. Aldehyde dehydrogenase 3 family member A2 (ALDH3A2) catalyzes the oxidation of long-chain aliphatic aldehydes to fatty acid. ALDH3A2 has been shown to be associated with ferroptosis in acute myeloid leukemia (AML), but the mechanism remains unclear. In this study, we analyzed the TCGA and GTEx databases and showed that high ALDH3A2 expression predicted poor prognosis in ovarian cancer. Further studies found that knockout or overexpression of ALDH3A2 correspondingly increased or attenuated the ferroptosis sensitivity of ovarian cancer cells. And sequencing revealed that ALDH3A2 knockout led to the activation of lipid metabolic, GSH metabolic, phospholipid metabolic, and aldehyde metabolic pathways, suggesting that ALDH3A2 induced changes in the sensitivity of ovarian cancer cells to ferroptosis by affecting these metabolic processes. Our results provide a new promising therapeutic strategy for the treatment of OC.


Assuntos
Ferroptose , Neoplasias Ovarianas , Humanos , Feminino , Apoptose , Aldeídos
12.
Zhongguo Zhong Yao Za Zhi ; 48(3): 811-822, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872245

RESUMO

Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1ß(IL-1ß), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.


Assuntos
Temperatura Alta , Espectrometria de Massas em Tandem , Animais , Ratos , Ratos Sprague-Dawley , Metabolômica , Alimentos , Febre , Interferon gama
13.
Biomater Adv ; 147: 213323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36764198

RESUMO

The cancer chemodynamic therapy based on the Fenton reaction has been attracting more and more attention. However, the performance of the Fenton reaction is restricted by the unsuitable physiological pH value and inadequate H2O2 content in the tumor microenvironment (TME). In this study, we proposed a novel method of inducing lipid peroxide (LPO) of the cancer cell membrane, whose performance is not limited by the pH value and H2O2 in the TME. The activatable LPO-inducing liposomes were constructed by encapsulating Fe3+-containing compound ferric ammonium citrate (FC) in the unsaturated soybean phospholipids (SPC). It was found that the FC could be reduced by the overexpressed glutathione (GSH) in the TME and produce iron redox couple. The Fe3+/Fe2+ mediated the peroxidation of the unsaturated SPC and induced the LPO in the cancer cells. Finally, LPO accumulation led to cancer cell death and tumor growth inhibition. Furthermore, the activatable liposomes did not damage healthy tissues because of the low GSH content in normal tissues and the GSH-triggered activation of the nanocarrier. Together, our findings revealed that FC-SPC-lipo displayed excellent anti-tumor performance and its therapeutic effects are less influenced by the TME, compared with the traditional ferroptosis.


Assuntos
Peróxidos Lipídicos , Neoplasias , Humanos , Peróxidos Lipídicos/farmacologia , Peróxidos Lipídicos/uso terapêutico , Lipossomos/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Membrana Celular/metabolismo , Microambiente Tumoral
14.
Med Res Rev ; 43(3): 683-712, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658745

RESUMO

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Assuntos
Ferroptose , Doenças Metabólicas , Humanos , Apoptose , Doenças Metabólicas/tratamento farmacológico , Antioxidantes , Peróxidos Lipídicos
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-970551

RESUMO

Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1β(IL-1β), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.


Assuntos
Animais , Ratos , Ratos Sprague-Dawley , Temperatura Alta , Espectrometria de Massas em Tandem , Metabolômica , Alimentos , Febre , Interferon gama
16.
Redox Biol ; 58: 102538, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36417796

RESUMO

Sarcopenia is prevalent in patients with hepatocellular carcinoma (HCC), and can adversely affect their outcomes. This study aims to explore the key mechanisms in the crosstalk between sarcopenia and HCC based on multi-omics profiling. A total of 136 male patients with HCC were enrolled. Sarcopenia was an independent risk factor for poor outcomes after liver transplantation (p < 0.05). Inflammatory cytokine and metabolomic profiling on these patients identified elevated plasma sTNF-R1/CHI3L1 and dysregulated lipid metabolism as related to sarcopenia and tumor recurrence risk concurrently (p < 0.05). Integrated analysis revealed close relationship between CHI3L1 and fatty acid metabolism. In mouse cachectic models by intraperitoneal injection of H22 cells, CHI3L1 was significantly elevated in the atrophic muscle tissue, as well as in circulation. In-vitro, CHI3L1 was up-regulated in muscle cells to protect itself from inflammatory damage through TNF-α/TNF-R1 signaling. CHI3L1 secreted by the muscle cells promoted the invasion of co-cultured HCC cells. Tumor tissue transcriptome data for 73 out of the 136 patients revealed that CHI3L1 may regulate fatty acid metabolism and oxidative stress. In vitro, CHI3L1 caused ROS and lipid accumulation. Targeted lipid profiling further proved that CHI3L1 was able to activate arachidonic acid metabolism, leading to lipid peroxide (LPO) accumulation. Meanwhile, LPO inhibition could compromise the remarkable pro-cancerous effects of CHI3L1. In conclusion, sarcopenia adversely affects the outcomes of liver transplantation for HCC. In sarcopenic patients, CHI3L1 was up-regulated and secreted by the skeletal muscle to protect itself through TNF-α/TNF-R1 signaling, which, in turn, can promote HCC tumor progression by inducing LPO accumulation.


Assuntos
Carcinoma Hepatocelular , Quitinases , Neoplasias Hepáticas , Sarcopenia , Animais , Masculino , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteína 1 Semelhante à Quitinase-3 , Ácidos Graxos , Lipídeos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores Tipo I de Fatores de Necrose Tumoral , Sarcopenia/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Humanos
17.
Redox Biol ; 58: 102520, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334379

RESUMO

While it is generally accepted that oxidative stress impacts the diabetic kidney and contributes to pathogenesis, there is a substantial lack of knowledge about the molecular entity and anatomic location of a variety of reactive species. Here we provide a novel "oxidative stress map" of the diabetic kidney - the first of its kind, and identify specific, oxidized and other reactive lipids and their location. We used the db/db mouse model and Desorption Electrospray Ionization (DESI) mass spectrometry combined with heatmap image analysis. We analyzed a comprehensive array of phospholipid peroxide species in normal (db/m) and diabetic (db/db) kidneys using DESI imaging. Oxilipidomics heatmaps of the kidneys were generated focusing on phospholipids and their potential peroxidized products. We identified those lipids that undergo peroxidation in diabetic nephropathy. Several phospholipid peroxides and their spatial distribution were identified that were specific to the diabetic kidney, with significant enrichment in oxygenated phosphatidylethanolamines (PE) and lysophosphatidylethanolamine. Beyond qualitative and semi-quantitative information about the targets, the approach also reveals the anatomic location and the extent of lipid peroxide signal propagation across the kidney. Our approach provides novel, in-depth information of the location and molecular entity of reactive lipids in an organ with a very heterogeneous landscape. Many of these reactive lipids have been previously linked to programmed cell death mechanisms. Thus, the findings may be relevant to understand what impact phospholipid peroxidation has on cell and mitochondria membrane integrity and redox lipid signaling in diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Camundongos , Animais , Fosfolipídeos/metabolismo , Nefropatias Diabéticas/metabolismo , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos , Rim/metabolismo , Diabetes Mellitus/metabolismo
18.
Front Genet ; 13: 1018829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160012

RESUMO

Ferroptosis is an iron-dependent programmed cell death, which is different from apoptosis, necrosis, and autophagy. Specifically, under the action of divalent iron or ester oxygenase, unsaturated fatty acids that are highly expressed on the cell membrane are catalyzed to produce lipid peroxidation, which induces cell death. In addition, the expression of the antioxidant system [glutathione (GSH) and glutathione peroxidase 4 (GPX4)] is decreased. Ferroptosis plays an important role in the development of diabetes mellitus and its complications. In this article, we review the molecular mechanism of ferroptosis in the development of diabetes mellitus and its complications. We also summarize the emerging questions in this particular area of research, some of which remain unanswered. Overall, this is a comprehensive review focusing on ferroptosis-mediated diabetes and providing novel insights in the treatment of diabetes from the perspective of ferroptosis.

19.
JACC Basic Transl Sci ; 7(8): 800-819, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061338

RESUMO

Ischemia-reperfusion (I/R) injury is a promising therapeutic target to improve clinical outcomes after acute myocardial infarction. Ferroptosis, triggered by iron overload and excessive lipid peroxides, is reportedly involved in I/R injury. However, its significance and mechanistic basis remain unclear. Here, we show that glutathione peroxidase 4 (GPx4), a key endogenous suppressor of ferroptosis, determines the susceptibility to myocardial I/R injury. Importantly, ferroptosis is a major mode of cell death in I/R injury, distinct from mitochondrial permeability transition (MPT)-driven necrosis. This suggests that the use of therapeutics targeting both modes is an effective strategy to further reduce the infarct size and thereby ameliorate cardiac remodeling after I/R injury. Furthermore, we demonstrate that heme oxygenase 1 up-regulation in response to hypoxia and hypoxia/reoxygenation degrades heme and thereby induces iron overload and ferroptosis in the endoplasmic reticulum (ER) of cardiomyocytes. Collectively, ferroptosis triggered by GPx4 reduction and iron overload in the ER is distinct from MPT-driven necrosis in both in vivo phenotype and in vitro mechanism for I/R injury. The use of therapeutics targeting ferroptosis in conjunction with cyclosporine A can be a promising strategy for I/R injury.

20.
Eur J Nutr ; 61(8): 4059-4075, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35804267

RESUMO

PURPOSE: Ferroptosis is a form of regulated cell death that has the potential to be targeted as a cancer therapeutic strategy. But cancer cells have a wide range of sensitivities to ferroptosis, which limits its therapeutic potential. Accumulation of lipid peroxides determines the occurrence of ferroptosis. However, the type of lipid involved in peroxidation and the mechanism of lipid peroxide accumulation are less studied. METHODS: The effects of fatty acids (10 µM) with different carbon chain length and unsaturation on ferroptosis were evaluated by MTT and LDH release assay in cell lines derived from prostate cancer (PC3, 22RV1, DU145 and LNCaP), colorectal cancer (HT-29), cervical cancer (HeLa) and liver cancer (HepG2). Inhibitors of apoptosis, necroptosis, autophagy and ferroptosis were used to determine the type of cell death. Then the regulation of reactive oxygen species (ROS) and lipid peroxidation by docosahexaenoic acid (DHA) was measured by HPLC-MS and flow cytometry. The avtive form of DHA was determined by siRNA mediated gene silencing. The role of lipoxygenases was checked by inhibitors and gene silencing. Finally, the effect of DHA on ferroptosis-mediated tumor killing was verified in xenografts. RESULTS: The sensitivity of ferroptosis was positively correlated with the unsaturation of exogenously added fatty acid. DHA (22:6 n-3) sensitized cancer cells to ferroptosis-inducing reagents (FINs) at the highest level in vitro and in vivo. In this process, DHA increased ROS accumulation, lipid peroxidation and protein oxidation independent of its membrane receptor, GPR120. Inhibition of long chain fatty acid-CoA ligases and lysophosphatidylcholine acyltransferases didn't affect the role of DHA. DHA-involved ferroptosis can be induced in both arachidonate lipoxygenase 5 (ALOX5) negative and positive cells. Down regulation of ALOX5 inhibited ferroptosis, while overexpression of ALOX5 promoted ferroptosis. CONCLUSION: DHA can effectively promote ferroptosis-mediated tumor killing by increasing intracellular lipid peroxidation. Both ALOX5 dependent and independent pathways are involved in DHA-FIN induced ferroptosis. And during this process, free DHA plays an important role.


Assuntos
Ácidos Docosa-Hexaenoicos , Neoplasias , Masculino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peróxidos Lipídicos , Lipoxigenase/metabolismo , Lipoxigenase/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Lisofosfatidilcolinas/farmacologia , Linhagem Celular Tumoral , Morte Celular , Peroxidação de Lipídeos , Lipoxigenases/metabolismo , Araquidonato Lipoxigenases/metabolismo , Araquidonato Lipoxigenases/farmacologia , Aciltransferases/metabolismo , Aciltransferases/farmacologia , Carbono , Coenzima A/metabolismo , Coenzima A/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...